Continued Fractions and Class Number Two
نویسنده
چکیده
We use the theory of continued fractions in conjunction with ideal theory (often called the infrastructure) in real quadratic fields to give new class number 2 criteria and link this to a canonical norm-induced quadratic polynomial. By doing so, this provides a real quadratic field analogue of the well-known result by Hendy (1974) for complex quadratic fields. We illustrate with several examples. 2000 Mathematics Subject Classification. 11R11, 11A55, 11R29.
منابع مشابه
On the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملOn Class Number Relations in Characteristic Two 2005 / 06 / 01 Yen - Mei
A theorem of F. Hirzebruch relates continued fractions to class numbers of quadratic number fields. A version for function fields of odd characteristic was established by D. R. Hayes and C. D. González. We present here a complete treatment of the even charateristic theory, in particular, two class number relations involving continued fractions are derived, one of which is an analogue of the Hir...
متن کاملESTIMATING THE MEAN OF INVERSE GAUSSIAN DISTRIB WTION WITH KNOWN COEFFICIENT OF VARIATION UNDER ENTROPY LOSS
An estimation problem of the mean µ of an inverse Gaussian distribution IG(µ, C µ) with known coefficient of variation c is treated as a decision problem with entropy loss function. A class of Bayes estimators is constructed, and shown to include MRSE estimator as its closure. Two important members of this class can easily be computed using continued fractions
متن کاملOn the Maillet–baker Continued Fractions
We use the Schmidt Subspace Theorem to establish the transcendence of a class of quasi-periodic continued fractions. This improves earlier works of Maillet and of A. Baker. We also improve an old result of Davenport and Roth on the rate of increase of the denominators of the convergents to any real algebraic number.
متن کاملDuke’s Theorem and Continued Fractions
For uniformly chosen random α ∈ [0, 1], it is known the probability the nth digit of the continued-fraction expansion, [α]n converges to the Gauss-Kuzmin distribution P([α]n = k) ≈ log2(1 + 1/k(k + 2)) as n → ∞. In this paper, we show the continued fraction digits of √ d, which are eventually periodic, also converge to the Gauss-Kuzmin distribution as d → ∞ with bounded class number, h(d). The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000